
Carrier states in a quantum dot

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 4697

(http://iopscience.iop.org/0953-8984/7/24/009)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 21:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/24
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Matter 7 (1995) 4691-4105. Printed in the UK 

Carrier states in a quantum dot 

B A AI-Riyami 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK and Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, 
Al-Khod Postal Code 123. Sultanate of Omm 

Received 7 November 1994. in final form 12 April 1995 

Abstract The ground-state and excited-state wavefunctions for interacting particles confined 
in a quantum dot are presented within the framework of the Johnson md Payne model. Properly 
symnetnzed spin and spatial parts are laid out. 

1. Introduction 

Recent progress in nanotechnology has made it possible to fabricate zero-dimensional 
stn~chues called quantum dots in which a variable number of carriers may be confined 
[ 1-71, These structures provide unique opportunities to study the behaviour of interacting 
particles in the extreme quantum limit. In practice gated dot devices [4, 61, are the most 
common. In these devices, it has been shown that the confining potential has nearly circular 
symmetry despite the square geometry of the gates and the fact that the evolution of the 
energy levels with increasing magnetic field is similar to that found for a parabolic potential 
f8.91. Graded GaAs/Gal_,Al,As quantum well structures where the confining potential is 
essentially parabolic have also been fabricated [lo]. Johnson and Payne [11-14] have put 
forward a model that facilitates the theoretical study of these stmctures. 

2. Formulations 

In the Johnson and Payne model the carriers are assumed to interact via the potential 

(1) 

where 7; and rj are the coordinates of the ith and j t h  carriers, Vo and R are constauts 
and m* is the carrier mass. The confinement is taken to be harmonic with o, being the 
harmonic constant. This leads to the spatial Hamiltonian 

1 2  V(r i ,  rj) = 2Vo - -m‘Q Iri - rjl” 
2 

Here w i ( B )  = m:+o: 14, o, = e B  Jm‘c, where B is the magnetic field and the z-component 
of the angular momentum for particle i is given by Li,z = xipi,,  - yipis .  This is second 
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quantized into a centre-of-mass part 

+ - B+B- + hoo(B)  (3)  
2 " " I  2 

with centre-of-mass coordinates 

and a relative mode part 

+-hi20 2 + N ( N  - 1)Vo (5 ) 

with relative coordinates 

Tij = (Xjj, yij) =Ti  - r' I Pij 5 (Pij.xg Pij,y) = P i  - Pj. (6) 
Here ( A + ,  B + )  are the raising operators and (A-, E - )  are the lowering operators for the 
centre-of-mass mode: 

112 

(7) 
1 

A * = [  4Nm*hwa(B) ] ["*oo(B)(X i iy) T i(px 7 PY)] 

112 

= [ 4 N m * h ~ ( B )  ' ] [Nm*oo(B)(X f iY) i(Px + Py)] . (8) 

The (U+,  b+) and (U- ,  b-) are the raising and lowering operators for the relative mode 

Both the centre-of-mass and relative mode ladder operators satisfy most of the usual 
commutation relations such as [A*B*:J = 0 or different operators commute, and [A-A+]  = 
1. T h e  difference ties in the relative mode ladder operators which do not fully commute 
among themselves. In particular 

(11) [u,~u;]  = [bijb$] = ctI*( 
where c i j ~  = 2 if i = k and j = I ;  cjjp;  = -2 if i = I and j = k ;  cijw = 1 if i = k or 
j = I ;  c;jxl = -1  if i = I or j = k and cjjx~ = 0 if i # k ,  I and j # k ,  1. 

The spin part of the Hamiltonian 

Hspin = -g*!JBB C s i . z  (17.) 
i 

depends on the spin only. 
In this paper we shall derive the wavefunctions for the model and in doing so we 

shall show the existence and location of the spurious states. The essential requirements 
for the wavefunctions are that they be orthonormal and that they obey the Pauli exclusion 
principle in the case of a system of a number of fermions. A number of methods exist for 
the production of many-electron wavefunctions. Most of them work from the combination 
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of single-electron wavefunctions or single-electron spin orbitals in the form of a Slater 
determinant. Others rely heavily on group theory and the irreducible representations of the 
group S. of all permutations of n objects. 

The question we are faced with now is how to represent the eigenstates of the model 
described previously or what are the wavefunctions. From the theory of a nuclear model 
in which the nuclear forces were assumed to be Hooke’s law forces between nucleons, 
whose antisymmetric eigenfunctions were calculated by Ingram Block and Yu-Chang Hsieh 
115, 161, it was shown that not all mathematically possible eigenstates are the physically 
plausible ones. In other words spurious states may exist which the Pauli principle does not 
agree with. The method they employed to generate the wavefunctions is not applicable in 
this case because the coordinates used are different. 

The wavefunction of a single electron is not completely characterized by its 
wavefunction in coordinate space, that is its orbital, but is essentially represented by a 
product of its orbital and spin parts. For a system of n electrons this requirement is still 
needed but the representation of the wavefunction of a many-electron system as a product 
of the orbital many-electron part and the spin part becomes quite a formidable task as the 
number of electrons increases. In the case of two electrons, antisymmetric and symmetric 
spin and orbital parts of the wavefunction may separately be produced with ease. 

With the discovery of the quantum Hall effect and the fractional quantum Hall effect 
and the resulting theoretical investigations [I71 conventional ways of representing the many- 
electron state proved to be inefficient. Laughlin [IS, 191 proposed a set of variational 
wavefunctions in order to represent the highly correlated many-electron phase believed to 
be present in these regimes; for the ground state he proposed a product of Jastrow functions. 
In this paper we shall produce exact wavefunctions for the highly correlated system of 
confined carriers existing in the lower-dimensional structures. 

3. The wavefunctions 

In the present model the operators are not single-electron operators, but are collective 
operators which obey bosonic statistics. It is also not possible to form totally antisymmetric 
products of more then two spins [ZO]. To obtain properly antisymmetrized wavefunctions 
for our problem we shall make use of the properties of the symmetry group S,. 

The coordinate wavefunctions for the stationary states of a system of two particles may 
be either symmetric or antisymmetric under the exchange of the two particles. For a system 
of an arbitrary number of particles, the coordinate wavefunctions need not necessarily be 
either symmetric or antisymmetric with respect to the interchange of any pair of particles. 
It is the complete wavefunction, which includes the spins, which must be symmetric or 
antisymmetric according to the statistics. 

The fact that the particles are identical means that the Hamiltonian is invariant under 
the interchange of the particles. Hence the wavefunctions obtained from the various 
interchanges of the variables will also be solutions of the Hamiltonian. In other words 
H commutes with all permutation operators p. These operators however do not commute 
with one another and so they cannot simultaneously be brought into diagonal form. This 
means that the wavefunctions cannot be so chosen that each of them is either symmetric or 
antisymmetric with respect to all interchanges separately. From the mathematical point of 
view, the problem is to find irreducible representations of the permutation group S, [21]. 

The method used in producing the wavefunctions for the model strongly relies on the 
Young diagrams or Young tableaux [ZI]. The wavefunction for a system of n fermions 
should belong to the group S, of all permutations of n objects. The full set of Young 
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diagrams for the number n of 'objects' represents the standard irreducible representations 
of the group S. where the shape of the diagram is in one-to-one correspondence with an 
irreducible representation of S.. Thus for n = 2 we have figure 1 representing the two 

a b c d e 

1 m I1 0 P 

t u v w x y  
m 

irreducible representations of the group. 

m l  

f g ( h l i l j l k l  
9 1 s 

(4 (b) 

Figure 1. The WO spin states for the &roup . 
state 

: ( a ) i s t h e S = l s t a t e a n d . .  is the = 0 spin 

Figure Z 
alphabetical order. 

Young tableau coniaining m rows and n columns which have been labelled in 

The Young tableau represents a function which is initially fully symmetric with respect 
to interchanges along each row. It is then antisymmetrized with respect to interchanges 
between two partitions along a column. In the final analysis a Young tableau made up of 
m rows and n columns will be of mixed symmetry with respect to interchanges along any 
column or row, except for interchanges between the extra boxes jutting out of the first row 
from the top which belong to single box columns and will remain fully symmctric. Thus, for 
the Young tableau depicted in figure 2, particles i, j and k will be symmetric with respect 
to interchanges within themselves, and all other combinations will be of mixed symmetry. 

The n = 2 case is special as the irreducible representations are either fully symmetric 
or fully antisymmetric. The difference starts with the n = 3 case where there are three 
irreducible representations-one fully symmehic, one fully antisymmetric and a third of 
mixed symmetry, whose Young diagrams are shown in figure 3. The number of irreducible 
representations for n = 2 is 2 and that for n = 3 is 3. The dimension for arbitrary n is 
given by the number of differently shaped Young diagrams. Figure 3 shows the irreducible 
representations for the case n = 3. 

(4 (b) (4 
Figure 3. Young diagrams representing the three possible spin states for the case where N = 3: 
(a) is the Young diagram for the S = 312 spin state and 6) is the Young diagram for the S = 112 
spin state: (c) represen& an unacceptable state 

A Young tableau on the other hand is a Young diagram of a given shape which has its 
boxes numbered in the 'standard' manner [21]. The standard Young tableaux are in oneto- 
one correspondence with the basis functions for an irreducible representation. Their number 
therefore gives the dimension for the irreducible representation. This may be illustrated for 
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Figure 4. Standard tableaux for the group SI for the pamtion [3, 21 

the case in which n = 5 ,  where the Young tableaux are given by figure 4 for the partition 
[32] (i.e. three boxes in the top row, two in the second and bottom row), which forms one 
of the classes or irreducible representations for S,. For each of the standard tableaux in 
each of the irreducible representations there exists a dual which is given by transposing the 
columns of the particular tableau. Figure 5 shows the duals for n = 13. The summation 
over the products of each standard Young tableau with its dual represents a function which 
is fully antisymmetric under any permutation of the coordinates. 

We shall now constrnct antisymmetrized wavefunctions for the model outlined 
previously using the relative mode operators in doing so and the Young diagrams. One 
can think of the Young tableau as representing the coordinate wavefunction and its dual 
the spin function or vice versa for the system of n electrons. This introduces a limit to 
the number of physicalIy acceptable irreducible representations or shapes of the Young 
diagrams. As is well known the spin of an electron (or hole) can be in either of two states. 
Each of the partitions of a particular row of a Young diagram represents a certain state. 
Therefore the Young diagram representing the spin part of the wavefunction can only have 
two rows at most. This is depicted in figure 6. The total spin of the above Young tableau 
is equal to 

(m - n)/2. (13) 

(4 
Figure 5. The Young rableau in (a) represents the 
shown in (b). 

parrition p, IlS dual is 

n 

Figure 6. A Young diagram showing Ihe spin state for the p b t i o n  [m. n] of the group S,+.. 

The Young diagrams representing the spatial coordinates of the system are the duals of 
the spin Young diagrams and can therefore have a maximum of two columns. As has been 
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shown, totally antisymmetric spin spatial states can be formed from a sum over the products 
of each one of the spatial basis functions with its dual spin part. By inspection, one may see 
that the state of highest spin antisymmetry is the lowest-energy state as the spatial function 
is the most symmetric. This means that the lower S total spin state of the system forms the 
ground state. The spin Young tableau has to have the maximum number of rows and the 
minimum number of columns possible. A few examples will serve to clarify this point. 

For N = 2, only two possible total spin states exist-the S = 0 singlet and the S = 1 
triplet total spin states whose spin Young diagrams are shown in figure 1. The state with 
S = 1 is fully symmetric in spin variables. Its dual is therefore fully antisymmetric in 
spatial coordinates. The spatial state for the dual of the fully antisymmetric state, S = 0, 
on the other hand, is fully symmetric. Now the 'absolute' ground state for the two-particle 
system is a spatially fully symmetric state. It is given by the ket 100. . .O) which, in our 
model, will be composed of a product of Gaussians and has energy equal to Es.  This 
forms the true ground state for the two-particle system. The lowest spatially completely 
antisymmetric state is the a&lOO.. .O) state as a& antisymmetrizes the wavefunction. Its 
energy is higher than E ,  by one relative electron-electron mode quantum. 

The N = 3 spin Young diagrams are given in figures 3(a) and (b). Figure 3(c) is not 
acceptable as there can only be two spin-half states. The ground state for the 3 particle 
state cannot therefore be formed from the fully symmetric 'absolute' ground state which 
is represented by the ket 100. ..O). The lowest-energy physically acceptable stale is the 
S = 1/2 state. Its spatial dual is represented by the same Young diagram and is written as 
a; 100. . .O)  where ij may either be 12, 13 or 23. We will later show how to produce an 
orthonormal, equally weighted basis using the Young tableaux for a certain Young diagram, 
and hence how the full wavefunction may be written. 

(4 (b) (4 
FIpm 7. The Young diagram for the three physically acceptable spin States for N = 4 fermions: 
(a) is the spin S = 2 state; (b) is the spin S = I state and (c) is the spin S = 0 state. 

(4 (b) (4 
Fibre 8. Young diagrams representing the three possible spin states forthe case of five fermions: 
(a) is the S = 112 ground state, (b) and ( c )  are the S = 3/2 and 5R spin states respectively. 

Although the N = 2 and N = 3 are both two dimensional due to the restrictions imposed 
by the spin, the N = 4 state is seen to be three dimensional with Young diagrams given 
in figure 7. The three states are composed of the S = 2 fully symmetric spin state, and, 
the S = 1 and S = 0 mixed-symmetry states. In this case too the ground state is seen not 
to be the spatially fully symmetric state. Due to the limitation of space we shall not fully 
investigate all N-particle ground states. It suffices to say that the 'absolute' ground state for 
an N-fermion system is the lowest total-spin S state and that this may not necessarily be 
the physically acceptable ground state. The energy is of course an eigenvalue of the spatial 
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x1 x 2  x3 X I  XS piJq p7Jq pi& pl-J-q 

(4 

$1 $2 43 4 4  45 

(b)  
Figure 9. (a) The Young tableaux representing the spin basis functions for the five spin-lR 
fermions for total-spin S = 112 state. (b) The Young tableaux representing the spatial basis 
functions for the five spin-112 fermions for the total-spin S = 112 state. 

or the dual of the Young diagram for the spin. Let us investigate the state with N = 5 
particles as this encompasses most of the relevant rules. 

It is easier to start with the relevant Young diagrams for the spin and hence produce 
the spatial ones which form a basis for the wavefunctions. The physically acceptable spin 
states are properly represented by the appropriate Young diagrams which are given in figure 
8 together with their total spins S. 

The N = 5 case is composed of three allowed spin states. The first is represented by 
the Young diagram shown in figure ??(a) which has S = 1/2 and is of mixed symmetry. 
"his state is five dimensional and forms the ground state. The Young diagram of fi,% 
8(b) represents the spin part of an excited state. This state is also of mixed symmetry. It 
has a total spin S = 3/2 and is four dimensional. The Young diagram for the thiid state 
is shown in figure S(c). This state is only one dimensional with spin S = 5/2 and is fully 
symmetric. 

The energy of the ground states is equal to E ,  plus five times the relative electron- 
electron mode quantum. Its basis spin states are represented by the Young tableaux shown 
in figure 9(a) whose duals which represent their spatial parts are shown in figure 9@). The 
set of spatial basis functions [ $ j ]  

$1 = a:,a:,~a,:loo.. .) (14) 

& = a:,a:,a~a:,lOO.. .) (15) 

(16) $3 = a,,a,,a3,%'100.. .) 

$4 = a:,a&o&a:,loo.. .) (17) 

+ + + +  

$5 = a:,a:p+~a;lOo.. .) (18) 

are not orthogonal to each other due to the non-trivial commutation relations of the relative 
mode operators of equations (9) and (10). 

The next exercise is to produce the full wavefunction using an orthonormal basis set. 
This can he done with the help of the Schmidt process [22, 231, which is used to produce 
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the orthonormal basis set from the set of &Ji spatial basis functions. The set of orthonormal 
basis functions are subsequently obtained as 

where the brackets signify inner products of the vectors. Hence the full wavefunction is 
given by Ci *;xi where the set of spinors x; are assumed to be orthonormal. 

3.1. Example 

A simple non-trivial fully worked out example would be the ground state for the three- 
fermion case (figure 3(b)). The non-orthogonal basis states may be represented by 

9, = U:,lOO..) (20) 

62 = a:,loo..). (21) 

$1 = a:*loo..) (22) 

and 

The orthogonal spatial states can be deduced from the relationships (equation (19)) 

and 

where the inner brackets are simply worked out from the commutators giving 

{U&,) = (([a;& +a&,)) = [a&i] = 1 

(a,a:,)2 = 4 

and 

and hence 

(26) 
The case where N = 5 is also solvable but is more tedious with the inner products 

( @ j & J j )  deduced from the commutators which haves! terms where s is the number of ladder 
operators in & J i .  

4. Conclusion 

In this paper we have outlined a method for generating the wavefunctions which obey the 
proper symmetry conditions for any number of particles interacting via Hooke‘s law forces. 
In doing so we have managed to locate the spurious stales and therefore the mathematical 
ground state energies which are not physically acceptable. We can therefore now generate 
the eigenenergies for the system. 

The case of N = 3 was explicitly investigated in order to show the method by which 
an orthonormal basis set may be generated. We have also touched upon the three-fermion 
case in order to give a complete example. Although it was not dwelr upon, a basis set 
which is not orthonormal would not represent the N particles properly so that they are all 
antisymmetric under any exchange. Due to the limitation of space we shall be unable to 
give any more specific examples of the use of the method for generating the wavefunctions 
for the system. 

1 
4 

*z = a:,100..) - -u:,100..). 
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